Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 309
1.
Neuroimage ; : 120645, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734156

Aggressive adolescents tend to exhibit abnormal fear acquisition and extinction, and reactive aggressive adolescents are often more anxious. However, the relationship between fear generalization and reactive aggression (RA) remains unknown. According to Reactive-Proactive Aggression Questionnaire (RPQ) scores, 61 adolescents were divided into two groups, namely, a high RA group (N=30) and a low aggression (LA) group (N=31). All participants underwent three consecutive phases of the Pavlovian conditioning paradigm (i.e., habituation, acquisition, and generalization), and neural activation of the medial prefrontal cortex (mPFC) was assessed by functional near-infrared spectroscopy (fNIRS). The stimuli were ten circles with varying sizes, including two conditioned stimuli (CSs) and generalization stimuli (GSs). A scream at 85 decibels served as the auditory unconditioned stimulus (US). The US expectancy ratings of both CSs and GSs were higher in the RA group than in the LA group. The fNIRS results showed that GSs evoked lower mPFC activation in the RA group compared to the LA group during fear generalization. These findings suggest that abnormalities in fear acquisition and generalization are prototypical dysregulations in adolescents with RA. They provide neurocognitive evidence for dysregulated fear learning in the mechanisms underlying adolescents with RA, highlighting the need to develop emotional regulation interventions for these individuals.

2.
Quant Imaging Med Surg ; 14(5): 3665-3675, 2024 May 01.
Article En | MEDLINE | ID: mdl-38720856

Background: Single-photon emission computed tomography-computed tomography (SPECT/CT) quantification has emerged as a valuable tool for assessing disease prognosis by accurately identifying and characterizing abnormal lesions with accumulated radionuclides. Papillary thyroid carcinoma (PTC) is the most prevalent type of thyroid cancer, and radioactive iodine (RAI) therapy is a standard treatment following total thyroidectomy. This study aimed to explore the potential utility the quantitative parameters of the thyroid bed under iodine-131 (I-131) SPECT/CT in the efficacy of RAI adjuvant therapy for patients with PTC. Methods: The retrospective cohort study enrolled 107 patients with PTC who underwent RAI adjuvant therapy from June 2020 to January 2023. Three days after the RAI adjuvant therapy, all patients underwent I-131 whole-body scans and SPECT/CT imaging. The quantitative parameters, including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and percent injected dose (%ID), were measured using image analysis software based on I-131 SPECT/CT thyroid bed uptake. Successful therapy was defined as inhibitory thyroglobulin (Tg) <0.2 ng/mL with negative thyroglobulin antibody (TgAb) and negative imaging examination 6 months after RAI adjuvant therapy. The relationship between the quantitative parameters and the treatment efficacy, in addition to the potential influencing factors, were analyzed. Results: The quantitative parameters from the successful group [SUVmax: median 6.15 g/mL, interquartile range (IQR) 2.34-13.80 g/mL; SUVmean: median 2.02 g/mL, IQR 0.89-4.93 g/mL; %ID: median 2.00%, IQR 1.00-4.00%] were significantly lower than those from the unsuccessful group (SUVmax: median 19.03 g/mL, IQR 5.31-45.10 g/mL, SUVmean 4.64 g/mL, IQR 2.07-19.05 g/mL; %ID: median 8.00%, IQR 3.00-18.00%) (SUVmax: Z=-3.755; SUVmean; Z=-3.671; %ID: Z=-4.070; all P values <0.001). SUVmax, SUVmean and %ID were positively correlated with the stimulated thyroglobulin (sTg) and inhibitory Tg at 6 months after RAI adjuvant therapy, respectively (all P values <0.001). SUVmax [odds ratio (OR) =1.045], SUVmean (OR =1.130), and %ID (OR =1.092) were predictive factors for the failure of RAI adjuvant therapy (all P values <0.001). Conclusions: Our study suggested that quantitative parameters (SUVmax, SUVmean, and %ID) derived from I-131 SPECT/CT imaging of the thyroid bed can serve as useful tools for predicting therapy outcomes following RAI adjuvant therapy.

3.
BMC Genomics ; 25(1): 316, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549050

BACKGROUND: Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT: Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION: In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.


Arabidopsis Proteins , Arabidopsis , MicroRNAs , Medicago sativa/genetics , Plant Proteins/genetics , Nitric Oxide/metabolism , Droughts , Base Sequence , Arabidopsis/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Arabidopsis Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Artif Intell Med ; 150: 102837, 2024 Apr.
Article En | MEDLINE | ID: mdl-38553151

The thickness of the choroid is considered to be an important indicator of clinical diagnosis. Therefore, accurate choroid segmentation in retinal OCT images is crucial for monitoring various ophthalmic diseases. However, this is still challenging due to the blurry boundaries and interference from other lesions. To address these issues, we propose a novel prior-guided and knowledge diffusive network (PGKD-Net) to fully utilize retinal structural information to highlight choroidal region features and boost segmentation performance. Specifically, it is composed of two parts: a Prior-mask Guided Network (PG-Net) for coarse segmentation and a Knowledge Diffusive Network (KD-Net) for fine segmentation. In addition, we design two novel feature enhancement modules, Multi-Scale Context Aggregation (MSCA) and Multi-Level Feature Fusion (MLFF). The MSCA module captures the long-distance dependencies between features from different receptive fields and improves the model's ability to learn global context. The MLFF module integrates the cascaded context knowledge learned from PG-Net to benefit fine-level segmentation. Comprehensive experiments are conducted to evaluate the performance of the proposed PGKD-Net. Experimental results show that our proposed method achieves superior segmentation accuracy over other state-of-the-art methods. Our code is made up publicly available at: https://github.com/yzh-hdu/choroid-segmentation.


Choroid , Learning , Choroid/diagnostic imaging , Retina/diagnostic imaging , Image Processing, Computer-Assisted
5.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429670

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


MicroRNAs , Seedlings , Seedlings/genetics , Seedlings/metabolism , Medicago sativa/genetics , Nitric Oxide/metabolism , Droughts , MicroRNAs/genetics , MicroRNAs/metabolism , Hormones/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
6.
Sci Data ; 11(1): 290, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472209

Fat infiltration in skeletal muscle is now recognized as a standard feature of aging and is directly related to the decline in muscle function. However, there is still a limited systematic integration and exploration of the mechanisms underlying the occurrence of myosteatosis in aging across species. Here, we re-analyzed bulk RNA-seq datasets to investigate the association between fat infiltration in skeletal muscle and aging. Our integrated analysis of single-nucleus transcriptomics in aged humans and Laiwu pigs with high intramuscular fat content, identified species-preference subclusters and revealed core gene programs associated with myosteatosis. Furthermore, we found that fibro/adipogenic progenitors (FAPs) had potential capacity of differentiating into PDE4D+/PDE7B+ preadipocytes across species. Additionally, cell-cell communication analysis revealed that FAPs may be associated with other adipogenic potential clusters via the COL4A2 and COL6A3 pathways. Our study elucidates the correlation mechanism between aging and fat infiltration in skeletal muscle, and these consensus signatures in both humans and pigs may contribute to increasing reproducibility and reliability in future studies involving in the field of muscle research.


Adipogenesis , Aging , Muscle, Skeletal , Aged , Animals , Humans , Adipogenesis/physiology , Cell Differentiation , Muscle, Skeletal/physiology , Swine , Datasets as Topic , RNA-Seq , Transcriptome , Adipocytes , Stem Cells
7.
Biochem Biophys Rep ; 38: 101665, 2024 Jul.
Article En | MEDLINE | ID: mdl-38419757

Pyroptosis induced by lipopolysaccharide (LPS) has an obvious impact on intestinal inflammation and immune regulation. Enterotoxigenic Escherichia coli (ETEC) K88 has been proved to induce inflammatory responses in several models, but whether E. coli K88 participates in the same process of pyroptotic cell death as LPS remains to be identified. We conducted a pilot experiment to confirm that E. coli K88, instead of Escherichia coli O157 and Salmonella typhimurium, promotes the secretion of interleukin-1 beta (IL-1ß) and interleukin-18 (IL-18) in macrophages. Further experiments were carried out to dissect the molecular mechanism both in vitro and in vivo. The Enzyme-Linked Immunosorbent Assay (ELISA) results suggested that E. coli K88 treatment increased the expression of pro-inflammatory cytokines IL-18 and IL-1ß in both C57BL/6 mice and the supernatant of J774A.1 cells. Intestinal morphology observations revealed that E. coli K88 treatment mainly induced inflammation in the colon. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of pyroptosis-related factors, such as NLRP3, ASC, and Caspase1, were significantly upregulated by E. coli K88 treatment. The RNA-seq results confirmed that the effect was associated with the activation of NLRP3, ASC, Caspase1, GSDMD, IL-18, and IL-1ß, and might also be related to inflammatory bowel disease and the tumor necrosis factor pathway. The pyroptosis-activated effect of E. coli K88 was significantly blocked by NLRP3 siRNA. Our data suggested that E. coli K88 caused inflammation by triggering pyroptosis, which provides a theoretical basis for the prevention and treatment of ETEC in intestinal infection.

8.
Small ; : e2311101, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38234132

Developing novel substances to synergize with nanozymes is a challenging yet indispensable task to enable the nanozyme-based therapeutics to tackle individual variations in tumor physicochemical properties. The advancement of machine learning (ML) has provided a useful tool to enhance the accuracy and efficiency in developing synergistic substances. In this study, ML models to mine low-cytotoxicity oncolytic peptides are applied. The filtering Pipeline is constructed using a traversal design and the Autogluon framework. Through the Pipeline, 37 novel peptides with high oncolytic activity against cancer cells and low cytotoxicity to normal cells are identified from a library of 25,740 sequences. Combining dataset testing with cytotoxicity experiments, an 80% accuracy rate is achieved, verifying the reliability of ML predictions. Peptide C2 is proven to possess membranolytic functions specifically for tumor cells as targeted by Pipeline. Then Peptide C2 with CoFe hollow hydroxide nanozyme (H-CF) to form the peptide/H-CF composite is integrated. The new composite exhibited acid-triggered membranolytic function and potent peroxidase-like (POD-like) activity, which induce ferroptosis to tumor cells and inhibits tumor growth. The study suggests that this novel ML-assisted design approach can offer an accurate and efficient paradigm for developing both oncolytic peptides and synergistic peptides for catalytic materials.

9.
J Adv Res ; 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38266820

INTRODUCTION: The design of precision antimicrobials aims to personalize the treatment of drug-resistant bacterial infections and avoid host microbiota dysbiosis. OBJECTIVES: This study aimed to propose an efficient de novo design strategy to obtain specifically targeted antimicrobial peptides (STAMPs) against methicillin-resistant Staphylococcus aureus (MRSA). METHODS: We evaluated three strategies designed to increase the selectivity of antimicrobial peptides (AMPs) for MRSA and mainly adopted an advanced hybrid peptide strategy. First, we proposed a traversal design to generate sequences, and constructed machine learning models to predict the anti-S. aureus activity levels of unknown peptides. Subsequently, six peptides were predicted to have high activity, among which, a broad-spectrum AMP (P18) was selected. Finally, the two targeting peptides from phage display libraries or lysostaphin were used to confer specific anti-S. aureus activity to P18. STAMPs were further screened out from hybrid peptides based on their in vitro and in vivo activities. RESULTS: An advanced hybrid peptide strategy can enhance the specific and targeted properties of broad-spectrum AMPs. Among 25 assessed peptides, 10 passed in vitro tests, and two peptides containing one bacterial-entrapping peptide (BEP) and one STAMP passed an in vivo test. The lead STAMP (P18E6) disrupted MRSA cell walls and membranes, eliminated established biofilms, and exhibited desirable biocompatibility, systemic distribution and efficacy, and immunomodulatory activity in vivo. Furthermore, a bacterial-entrapping peptide (BEP, SP5) modified from P18, self-assembled into nanonetworks and rapidly entrapped MRSA. SP5 synergized with P18E6 to enhance antibacterial activity in vitro and reduced systemic MRSA infections. CONCLUSIONS: This strategy may aid in the design of STAMPs against drug-resistant strains, and BEPs can serve as powerful STAMP adjuvants.

10.
Pest Manag Sci ; 80(3): 1016-1025, 2024 Mar.
Article En | MEDLINE | ID: mdl-37831548

BACKGROUND: Weeds are one of the critical factors that negatively affect crop yield and quality. Microbial herbicides are a research hotspot for novel herbicides owing to their environmental safety and lack of weed resistance. In the current study, the active ingredients of Serratia marcescens Ha1, a new microbial herbicide, were investigated for their effectiveness against agricultural weeds using bioassay-guided fractionation. RESULTS: The results revealed that petroleum ether and ethyl acetate extracts of S. marcescens Ha1 had high herbicidal activity. Forty-nine compounds were identified from the petroleum ether extract, including 2,4-di-tert-butylphenol (DB; C14 H22 O, 38.82%), ethyl 14-methyl-hexadecanoate, 1-nonadecene, and [1,1'-biphenyl]-2,3'-diol, 3,4',5,6'-tetrakis. Of these, DB showed significant inhibitory effects on root and shoot growth in Amaranthus retroflexus, with half-maximal inhibitory concentration (IC50 ) values of 389.17 and 832.44 mg L-1 , respectively. In addition, 7-hydroxy-3-(2-methylpropyl)-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione (HPD) was identified as the major active ingredient in the ethyl acetate extract of S. marcescens Ha1 using bioassay-guided fractionation, with IC50 values of 439.86 and 476.95 mg L-1 against A. retroflexus shoot and root growth, respectively. Scanning electron microscopy indicated that DB and HPD exert destructive effects on A. retroflexus root, and the damage is gradually aggravated with increasing treatment time and concentration. CONCLUSION: The S. marcescens Ha1 extract and its active compounds DB and HPD exhibit significant herbicidal activity, which could be utilized further for the development of microbial herbicides. © 2023 Society of Chemical Industry.


Acetates , Alkanes , Herbicides , Phenols , Herbicides/pharmacology , Serratia marcescens , Plant Weeds
11.
Br J Nutr ; 131(8): 1298-1307, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38098370

This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.


Antioxidants , Enterococcus faecium , Swine , Animals , Antioxidants/metabolism , Bacillus subtilis/genetics , Enterococcus faecium/genetics , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/metabolism , Lipids
12.
Front Genet ; 14: 1264237, 2023.
Article En | MEDLINE | ID: mdl-38075676

Background: A rare X-linked hereditary condition known as ATP6AP2-congenital disorder of glycosylation (ATP6AP2-CDG) is caused by pathogenic variants in ATP6AP2, resulting in autophagic misregulation with reduced siganling of mammalian target of rapamycin (mTOR) that clinically presents with aberrant protein glycosylation, hepatosteatosis, immunodeficiency, cutis laxa, and psychomotor dysfunction. To date, only two missense mutations have been reported in three patients from two unrelated families. Methods: In order to extend the profiles of phenotype and genotype associated with ATP6AP2-CDG, we assessed the clinical history, whole exome sequencing (WES), and liver histology as well as immunohistochemistry in a Chinese patient, and performed quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and untargeted metabolomics in genetic exogenously constructed cells. Results: The 11-month-old Chinese boy presented with recurrent jaundice, cutis laxa, cirrhosis, growth retardation, coagulopathy, anemia, and cardiomegaly, and underwent liver transplantation. A novel mutation, c.185G>A (p.Gly62Glu), was identified in exon 3 of ATP6AP2. The expression of ATP6AP2 was observed to remain unchanged in the liver sample of the patient as well as in HEK293T cells harboring the p.Gly62Glu. This missense mutation was found to dysregulate autophagy and mTOR signaling. Moreover, metabolomics analysis revealed that the exogenously introduced Gly62Glu mutant resulted in the downregulation of numerous metabolites involved in lipid metabolism pathway. Conclusion: This study may enable a more detailed exploration of its precise pathogenesis and potential therapeutic interventions.

13.
Indian J Pathol Microbiol ; 66(4): 845-847, 2023.
Article En | MEDLINE | ID: mdl-38084545

Mixed epithelial and stromal tumor of the kidney (MESTK) occurs almost exclusively in perimenopausal women while rarely in children. Only five pediatric patients have been described previously. Herein, we report a girl and a boy with MESTK, aged 3- and 4-years-old, respectively. The two patients presented with hematuria or an abdominal mass. Histologically, the tumors were both composed of epithelial and stromal elements. Immunohistochemical staining of tumor cells expressed epithelial and mesenchymal component markers. They were diagnosed with MESTK by histology and immunohistochemistry after surgery. The patients were at good condition after surgery. To our knowledge, these are the youngest reported cases of MESTK. And the glandular luminal structure formed by the epithelium was lined with urothelium, which expanded the histological map of MESTK.


Kidney Neoplasms , Neoplasms, Complex and Mixed , Neoplasms, Glandular and Epithelial , Soft Tissue Neoplasms , Child, Preschool , Female , Humans , Male , Immunohistochemistry , Kidney/pathology , Kidney Neoplasms/diagnosis , Kidney Neoplasms/surgery , Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/surgery
14.
Indian J Pathol Microbiol ; 66(4): 868-870, 2023.
Article En | MEDLINE | ID: mdl-38084552

Renal oncocytoma is a benign renal neoplasm which has mostly been reported in adults. Occurrence in children is infrequent. To date, there are only six pediatric cases of renal oncocytoma reported previously. Herein, we report a 13-year-old girl presented with hematuria for a week. Abdominal computed tomography showed a well-defined heterogeneous solid mass with a stellate central scar in the left kidney. The patient underwent a nephron sparing surgery. Histopathological and immunohistochemical findings confirmed the diagnosis of renal oncocytoma. Though uncommon, renal oncocytoma should be considered as the differential diagnosis of renal tumor in children. In addition, intranuclear inclusions were firstly described in this pediatric patient with unclear significance, which need a large cohort to summarize and analyze.


Adenoma, Oxyphilic , Kidney Neoplasms , Adolescent , Female , Humans , Adenoma, Oxyphilic/diagnostic imaging , Adenoma, Oxyphilic/surgery , Diagnosis, Differential , Kidney Neoplasms/diagnosis , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Tomography, X-Ray Computed/methods
15.
Front Microbiol ; 14: 1191392, 2023.
Article En | MEDLINE | ID: mdl-37789849

Introduction: Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods: In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results: For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the ß-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion: In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.

16.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37855619

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Antibodies, Neutralizing , COVID-19 , Pandemics , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral , Breakthrough Infections , COVID-19/immunology , COVID-19/virology
17.
Sci Adv ; 9(39): eadf8782, 2023 09 29.
Article En | MEDLINE | ID: mdl-37774026

Specifically targeted antimicrobial peptides (STAMPs) are novel alternatives to antibiotics, whereas the development of STAMPs for colonic infections is hindered by limited de novo design efficiency and colonic bioavailability. In this study, we report an efficient de novo STAMP design strategy that combines a traversal design, machine learning model, and phage display technology to identify STAMPs against Clostridium perfringens. STAMPs could physically damage C. perfringens, eliminate biofilms, and self-assemble into nanoparticles to entrap pathogens. Further, a gut-targeted engineering particle vaccine (EPV) was used for STAMPs delivery. In vivo studies showed that both STAMP and EPV@STAMP effectively limited C. perfringens infections and then reduced inflammatory response. Notably, EPV@STAMP exhibited stronger protection against colonic infections than STAMPs alone. Moreover, 16S ribosomal RNA sequencing showed that both STAMPs and EPV@STAMP facilitated the recovery of disturbed gut microflora. Collectively, our work may accelerate the development of the discovery and delivery of precise antimicrobials.


Antimicrobial Peptides , Clostridium Infections , Humans , Clostridium perfringens/genetics , Anti-Bacterial Agents , Biofilms
18.
Am J Chin Med ; 51(7): 1751-1793, 2023.
Article En | MEDLINE | ID: mdl-37732372

Emodin is a natural compound found in several traditional Chinese medicines, including Rheum palmatum and Polygonum cuspidatum. Recent studies have shown that emodin exhibits potent anticancer effects against a variety of cancer types, including liver, breast, lung, and colon cancer. Emodin's anticancer effects are mediated through several mechanisms, including inhibition of cell proliferation, induction of apoptosis, and suppression of tumor angiogenesis and metastasis. In this review, we provide an overview of recent research progress and new perspectives on emodin's anticancer effect. We summarize the current understanding of the molecular mechanisms underlying emodin's anticancer activity, including its effects on signaling pathways such as the PI3K/Akt, MAPK, and NF-[Formula: see text]B pathways. We also discuss the potential of emodin as a therapeutic agent for cancer treatment, including its use in combination with conventional chemotherapeutic drugs and as a sensitizer for radiotherapy. Furthermore, we highlight recent advances in the development of emodin derivatives and their potential as novel anticancer agents. Finally, we discuss the challenges and opportunities for the translation of emodin's anticancer properties into clinical applications, including the need for further preclinical and clinical studies to evaluate its safety and efficacy. In conclusion, emodin represents a promising natural compound with potent anticancer properties, and its potential as a therapeutic agent for cancer treatment warrants further investigation. This review provides a comprehensive overview of the current research progress and new perspectives on emodin's anticancer effects, which may facilitate the development of novel therapeutic strategies for cancer treatment.

19.
J Nutr Biochem ; 122: 109437, 2023 12.
Article En | MEDLINE | ID: mdl-37666478

Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.


Amino Acids, Branched-Chain , Obesity , Mice , Animals , NADP , Amino Acids, Branched-Chain/metabolism , Obesity/metabolism , Cell Cycle , Adipogenesis , RNA, Messenger/metabolism , 3T3-L1 Cells , Diet, High-Fat/adverse effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
20.
AMB Express ; 13(1): 93, 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37665384

The biosynthetic process of selenium nanoparticles (SeNPs) by specific bacterial strain, whose growth directly affects the synthesis efficiency, has attracted great attentions. We previously reported that Bacillus paralicheniformis SR14, a SeNPs-producing bacteria, could improve intestinal antioxidative function in vitro. To further analyze the biological characteristics of SR14, whole genome sequencing was used to reveal the genetic characteristics in selenite reduction and sugar utilization. The results reviewed that the genome size of SR14 was 4,448,062 bp, with a GC content of 45.95%. A total of 4300 genes into 49 biological pathways was annotated to the KEGG database. EC: 1.1.1.49 (glucose-6-phosphate 1-dehydrogenase) and EC: 5.3.1.9 (glucose-6-phosphate isomerase), were found to play a potential role in glucose degradation and EC:2.7.1.4 (fructokinase) might be involved in the fructose metabolism. Growth profile and selenite-reducing ability of SR14 under different sugar supplements were determined and the results reviewed that glucose had a better promoting effect on the reduction of selenite and growth of bacteria than fructose, sucrose, and maltose. Moreover, RT-qPCR experiment proved that glucose supplement remarkably promoted the expressions of thioredoxin, fumarate reductase, and the glutathione peroxidase in SR14. Analysis of mRNA expression showed levels of glucose-6-phosphate dehydrogenase and fructokinase significantly upregulated under the supplement of glucose. Overall, our data demonstrated the genomic characteristics of SR14 and preliminarily determined that glucose supplement was most beneficial for strain growth and SeNPs synthesis.

...